The Westerlund 2 star cluster’s raucous core is no place to form planets

Astronomers using NASA’s Hubble Space Telescope are finding that planets have a tough time forming in the rough-and-tumble central region of the massive, crowded star cluster Westerlund 2. Located 20,000 light-years away, Westerlund 2 is a unique laboratory to study stellar evolutionary processes because it’s relatively nearby, quite young, and contains a large stellar population.

A three-year Hubble study of stars in Westerlund 2 revealed that the precursors to planet-forming disks encircling stars near the cluster’s center are mysteriously devoid of large, dense clouds of dust that in a few million years could become planets.

However, the observations show that stars on the cluster’s periphery do have the immense planet-forming dust clouds embedded in their disks. Researchers think our solar system followed this recipe when it formed 4.6 billion years ago.

So why do some stars in Westerlund 2 have a difficult time forming planets while others do not? It seems that planet formation depends on location. The most massive and brightest stars in the cluster congregate in the core, which is verified by observations of other star-forming regions. The cluster’s center contains at least 30 extremely massive stars, some weighing up to 80 times the mass of the Sun. Their blistering ultraviolet radiation and hurricane-like stellar winds of charged particles blowtorch disks around neighboring lower-mass stars, dispersing the giant dust clouds.

The Hubble observations represent the first time that astronomers analyzed an extremely dense star cluster to study which environments are favorable to planet formation. Scientists, however, are still debating whether bulky stars are born in the center or whether they migrate there. Westerlund 2 already has massive stars in its core, even though it is a comparatively young 2-million-year-old system.

Using Hubble’s Wide Field Camera 3, the researchers found that of the nearly 5,000 stars in Westerlund 2 with masses between 0.1 to 5 times the Sun’s mass, 1,500 of them show fluctuations in their light as the stars accrete material from their disks. Orbiting material clumped within the disk would temporarily block some of the starlight, causing brightness fluctuations.

However, Hubble detected the signature of such orbiting material only around stars outside the cluster’s packed central region. The telescope witnessed large drops in brightness for as much as 10 to 20 days around 5% of the stars before they returned to normal brightness. They did not detect these dips in brightness in stars residing within four light-years of the center. These fluctuations could be caused by large clumps of dust passing in front of the star. The clumps would be in a disk tilted nearly edge-on to the view from Earth. “We think they are planetesimals or structures in formation,” Sabbi explained. “These could be the seeds that eventually lead to planets in more evolved systems. These are the systems we don’t see close to very massive stars. We see them only in systems outside the center.”

Thanks to Hubble, astronomers can now see how stars are accreting in environments that are like the early universe, where clusters were dominated by monster stars. So far, the best known nearby stellar environment that contains massive stars is the starbirth region in the Orion Nebula. However, Westerlund 2 is a richer target because of its larger stellar population.

Source: “IN PLANET FORMATION, IT’S LOCATION, LOCATION, LOCATION” Hubble cite, 28 May 2020. <https://hubblesite.org/contents/news-releases/2020/news-2020-15>

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll Up