Where giant jets from black holes discharge their energy

Some of black holes blast out gigantic, super-heated jets of plasma at nearly the speed of light. The primary way that the jets discharge this powerful motion energy is by converting it into extremely high-energy gamma rays. However, UMBC physics Ph.D. candidate Adam Leah Harvey says, “How exactly this radiation is created is an open question.”

The jet has to discharge its energy somewhere, and previous work doesn’t agree where. The prime candidates are two regions made of gas and light that encircle black holes, called the broad-line region and the molecular torus.

A black hole’s jet has the potential to convert visible and infrared light in either region to high-energy gamma rays by giving away some of its energy. Harvey’s new research sheds light on this controversy by offering strong evidence that the jets mostly release energy in the molecular torus, and not in the broad-line region.

To come to their conclusions, Harvey applied a standard statistical technique called “bootstrapping” to data from 62 observations of black hole jets. “A lot of what came before this paper has been very model-dependent. Other papers have made a lot of very specific assumptions, whereas our method is extremely general,” Harvey explains. “There isn’t much to undermine the analysis. It’s well-understood methods, and just using observational data. So the result should be correct.”

A quantity called the seed factor was central to the analysis. The seed factor indicates where the light waves that the jet converts to gamma rays come from. If the conversion happens at the molecular torus, one seed factor is expected. If it happens at the broad-line region, the seed factor will be different.

Harvey calculated the seed factors for all 62 observations. They found that the seed factors fell in a normal distribution aligned almost perfectly around the expected value for the molecular torus. That result strongly suggests that the energy from the jet is discharging into light waves in the molecular torus, and not in the broad-line region.

Source: “Researchers identify where giant jets from black holes discharge their energy” PhysOrg, 15 December 2020

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll Up